Lin. Alogebra UE

$$
\begin{aligned}
& \text { XII) } \begin{array}{l}
\text { 12.9: } 1,2,5,7 \\
\text { 12.10: } 2,3,7 \\
13.1: 1
\end{array} \\
& 12.9 .1) \otimes\left(\mathbb{R}^{3 \times 1}, 6\right) \\
& a_{1}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \quad v_{2}=\left(\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right) \\
& \operatorname{det} G\left(\theta_{1}, \theta_{2}\right)=\left|\begin{array}{ll}
\theta_{1} \cdot \theta_{1} & \theta_{1} \cdot \theta_{2} \\
\theta_{2} \cdot \theta_{1} & \theta_{2} \cdot \theta_{2}
\end{array}\right|=\left|\begin{array}{lr}
6 & 4 \\
4 & 11
\end{array}\right|=50 \\
& \Rightarrow \text { Flicheminhels }: 5 \cdot \sqrt{2} \\
& \text { b) }\left(\mathbb{R}^{4 \times 1}, c\right) \\
& \theta_{1}=\left(\begin{array}{c}
2 \\
1 \\
0 \\
-1
\end{array}\right) \quad \theta_{2}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) \quad \theta_{3}=\left(\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right) \\
& \operatorname{det} G\left(a_{1}, a_{2}, v_{3}\right)=\left|\begin{array}{rrr}
6 & 2 & -3 \\
2 & 2 & -1 \\
-3 & -1 & 6
\end{array}\right|=72+6-6-18-6-24=36 \\
& \Rightarrow \text { Rouminhell: } \pm 6 \text {. } \\
& \text { 12.9.2) }\left(\mathbb{R}^{4.1}, v\right) \quad v(E, E)=\operatorname{diog}(1,1,2,3) \\
& Q_{R}=\left(\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right) \quad b=\left(\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right) \quad c=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \\
& G(v, b, c)=\left(\begin{array}{lll}
a \cdot a & b \cdot a & a \cdot c \\
b \cdot b a & b \cdot b & b \cdot c \\
c \cdot a & c \cdot b & c \cdot c
\end{array}\right)=\left(\begin{array}{ccc}
12 & 4 & 3 \\
4 & 6 & 0 \\
3 & 0 & 3
\end{array}\right) \\
& \operatorname{det} G(a, b, c)=12 \cdot 18-3 \cdot 18-4 \cdot 12=114
\end{aligned}
$$

12.9.5, (\mathbb{N}, v) n-dim. eubl.

$$
\begin{aligned}
& \left.B=\left(e_{1}, \ldots, e_{r}\right) \text { Besis wan U (UR won } V\right) \\
& \text { fr: } V \rightarrow U \text { whth. Pojo ouf } U \\
& z z: V S \Rightarrow \operatorname{det} G\left(a_{1}, b_{4}, b_{2}, \ldots, b_{n}\right)=\operatorname{det} G\left(b_{1}, b_{2}, \ldots, b_{n}\right) \cdot\left\|a-y_{1}(a)\right\|^{2} \quad \forall Q \in \mathbb{V} \\
& a=u_{\substack{u \\
\epsilon U \\
\epsilon U U^{1}}}=\sum_{i=1}^{r} x_{i} b_{i}+u_{\perp} \quad \forall a \in V \\
& f(a)=\mu \Rightarrow \mu_{1}=a-\mu=a-f(a) \\
& \Rightarrow \operatorname{det} G\left(a, b_{1}, \ldots, b_{r}\right)=\operatorname{det} G\left(\sum_{i=1}^{n} x_{i} b_{i}+u_{1}, b_{1}, \ldots, b_{r}\right) \\
& \text { - } \sum_{i=1}^{r} x_{i} \cdot \underbrace{\forall \operatorname{det} G\left(\mu_{1}, b_{1}, \ldots, b_{r}\right)}_{=0 \quad \operatorname{det} G\left(b_{i}, b_{1}, \ldots, b_{n}\right)} \\
& =\left|\begin{array}{ccc}
u_{1} \cdot u_{1} & \begin{array}{|c}
u_{1}-b_{1}
\end{array} \cdots \cdot u_{1} \cdot b_{r} \\
b_{1} \cdot u_{1} \\
\vdots & b_{1} \cdot b_{1} \cdots \cdots \cdot b_{1} \cdot b_{r} \\
b_{r} \cdot u_{1} \\
b_{0} & \ddots & b_{r} \cdot b_{1} \cdots b_{r} \cdot b_{n}
\end{array}\right|
\end{aligned}
$$

Entron. 1. fris

$$
\because\left\|u_{1}\right\|^{2} \cdot \operatorname{det} G\left(b_{1}, \ldots, b_{n}\right)=\|a-\gamma r(a)\|^{2} \cdot \operatorname{det} G_{t}\left(b_{1}, \ldots, b_{n}\right)
$$

12.10.2 B

$$
A=(1,1,1,1) \quad \Rightarrow f_{A}: \mathbb{R}^{4 / 1} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& O_{1}=\{(1)\} \Rightarrow Q=E_{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ber } f_{A}=A^{0}=\left[\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right)\right] \quad\left(\text { Ber } f_{A}\right)^{2}=\left[\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\right] \\
& \Rightarrow P^{\top}=\frac{1}{2}\left(\begin{array}{rrrr}
1 & -\sqrt{2} & -\sqrt{2} & -\sqrt{2} \\
1 & \sqrt{2} & 0 & 0 \\
1 & 0 & \sqrt{2} & 0 \\
1 & 0 & 0 & \sqrt{2}
\end{array}\right) \\
& \begin{aligned}
A & =Q \cdot\left(\begin{array}{llll}
n & 0 & 0 & 0
\end{array}\right) \cdot P \\
\Leftrightarrow & A^{T}
\end{aligned}=P^{\top} \cdot\left(-\cdots P^{\top} \cdot\left(\begin{array}{c}
w \\
0 \\
0 \\
0
\end{array}\right)=1=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \Rightarrow n=2\right.
\end{aligned}
$$

Pendoimeene:

$$
\begin{aligned}
& \text { also } W=(2,0,0,0) \Rightarrow W^{+}=\left(\frac{1}{2}, 0,0,0\right)^{\top} \\
& \Rightarrow A^{+}=P^{\top} \cdot W^{+} \cdot Q^{\top} \\
& \\
& =\frac{1}{4}\left(\begin{array}{cccc}
1 & -\sqrt{2} & -\sqrt{2} & -\sqrt{2} \\
1 & \sqrt{2} & 0 & 0 \\
1 & 0 & \sqrt{2} & 0 \\
1 & 0 & \sqrt{2}
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{1}{4}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \\
& \text { G) } B=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{ker} f_{B}=B^{\circ}=\left[\begin{array}{l}
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
\tilde{\varepsilon}_{3}
\end{array}\right] \\
& \left(\operatorname{Ber} f_{B}\right)^{2}=[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \underbrace{\tilde{b}_{2}}_{b_{1}}, \underbrace{1}_{b_{2}} \begin{array}{l}
1 \\
0
\end{array}] \Rightarrow f\left(\mathbb{R}^{5 \times 1}\right)=f\left(\left(b_{2}, b_{2}\right)\right)=\left[\binom{0}{1},\binom{1}{0}\right]=: Q \\
& P^{\top}=\left(e_{2}, b_{2}, b_{3}\right) \Rightarrow P=P^{\top}=E_{3} \\
& \left.\Rightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)^{(0} \begin{array}{l}
0 \\
1
\end{array}\right)=\left(\begin{array}{lll}
\forall
\end{array}\right) \quad w_{1}=n_{2}=1 \\
& \text { veso } W=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \Rightarrow W^{+}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right) \\
& \Rightarrow B^{+}=P^{\top} \cdot W^{+} \cdot Q^{\top} \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right) \\
& \text { c) } C=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \quad \Rightarrow f_{c} \cdot \mathbb{R}^{2 m} \rightarrow \mathbb{R}^{2 \times 1}
\end{aligned}
$$

$$
\begin{aligned}
& C=Q \cdot \operatorname{dieg}\left(n_{2}, n_{2}\right) \cdot P \\
& \in O_{2} \\
& \text { hen } f_{c}=C^{0}=\left[\binom{1}{-1}\right] \Rightarrow B_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1} \\
& \left(B_{\text {en }} f_{0}\right)^{+}=\left[\binom{1}{1}\right] \Rightarrow b_{1}=\frac{1}{\sqrt{2}}\binom{1}{1} \Rightarrow f_{c}\left(b_{1}\right)=\binom{\frac{2}{\sqrt[2]{2}}}{0} \Rightarrow Q:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=E_{2} \\
& P^{\top}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=P
\end{aligned}
$$

$$
\Rightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
n_{1} & 0 \\
0 & n_{2}
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \Rightarrow \begin{aligned}
& n_{1}=\sqrt{2} \\
& n_{2}=0
\end{aligned}
$$

Pendoimperse:

$$
\begin{aligned}
C^{\top} & =P^{\top} \cdot W^{\top} \cdot Q^{\top} \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
\frac{1}{2} & 0
\end{array}\right)
\end{aligned}
$$

12.10.3) \&, $A \in K^{m \times n}$, Syrelden bilden ONS won $\mathbb{K}^{m \times 1}$
n Spalsan, hu. $\Rightarrow \lg A=n$
(12.36)

$$
\begin{aligned}
\Rightarrow A^{\top} & =(\underbrace{\bar{A}^{\top} \cdot A})^{-1} \cdot \bar{A}^{\top}=\bar{A}^{\top} \\
& =\left(\begin{array}{ll}
\theta_{1}-\theta_{1} & v_{2} \cdot \theta_{1} \ldots \\
\theta_{2} \cdot \theta_{1} & 0_{2} \cdot \theta_{2}
\end{array}\right)=E_{n}
\end{aligned}
$$

b) $N_{m, n}:=m \times n$ Nullmathix ibber \mathbb{K}

Singulämerteserleygung:
Singuleänsele..Eigennerte von $N_{m n}^{\top} \cdot N_{m n}=N_{n m} \cdot N_{m n}=N_{n n}$

$$
\begin{aligned}
& \quad E W v \cdot N_{n n}: O \text { (Vielfochheid } n \text {) } \\
\Rightarrow N_{m n} & =E_{m} \cdot N_{m n} \cdot E_{n} \quad \Rightarrow W=\text { Nullmosnx } \\
& \Rightarrow Q \in O_{m}(\mathbb{K}, \omega) \quad \therefore \quad \therefore P \in O_{n}(\mathbb{K}, \omega)
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
&
\end{aligned}
$$

Pendoimese:

$$
N_{m n}^{\dagger}=\bar{P}^{\top} \cdot N_{n m} \cdot \bar{Q}^{\top}=E_{n} \cdot N_{n m} \cdot E_{m}=N_{n m}
$$

$$
\text { 12.10.7) } Q x_{1}+Q x_{2}=2 a \quad \text { a }=\left(\begin{array}{ll}
Q & Q \\
1 & 2 \\
1 & 1
\end{array}\right) \quad\left(s_{i}\right)=\left(\begin{array}{l}
2 \\
3 \\
x_{1}+2 x_{2}
\end{array}\right)
$$

$\lg A=2 \quad \forall Q \in \mathbb{R} \Rightarrow$ Cose Normalgleichungssystem $A^{\top} A^{\left(x_{j}\right)}-A^{\top}\left(s_{i}\right)$

$$
A^{\top} A=\left(\begin{array}{lll}
Q & 1 & 1 \\
Q & 2 & 1
\end{array}\right)\left(\begin{array}{ll}
Q & Q \\
1 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
Q^{2}+2 & Q^{2}+3 \\
Q^{2}+3 & Q^{2}+5
\end{array}\right) \quad A^{\top} \cdot\left(S_{1}\right)=\binom{2 Q^{2}+6}{2 Q^{2}+9}
$$

x_{1}	x_{2}	1
$a^{2}+2$	$a^{2}+3$	$2 a^{2}+6$
$a^{2}+3$	$a^{2}+5$	$2 a^{2}+9$
$a^{2}+2$	$a^{2}+3$	$2 a^{2}+6$
1	2	3
0	$-a^{2}-1$	$-a^{2}$
1	2	3
0	1	$\frac{a^{2}}{a^{2}+1}$
1	2	3
1	0	$3-2 \frac{1}{a^{2}+1}$
1	$0-2)$	
$a^{2}+1$		

$$
\Rightarrow\binom{e_{1}}{e_{2}}=\binom{3-2 \frac{a^{2}}{a^{2}+1}}{\frac{a^{2}}{a^{2}+1}}
$$

13.1.1) $A=\mathbb{C}^{2 \times 1} \quad$ L... Ben. unitänes SKP
\sum Syphine, Gleichung: $(x-m) \cdot(x-m)=1$

$$
\begin{aligned}
& m=\binom{0}{m_{2}} \quad \text { Gerade } g: x_{2}=0 \\
& \text { ges: } \sum \cap g \\
& \begin{aligned}
(x-m) \cdot(x-m) & =\overline{(x-m)^{\top}} \cdot(x-m) \\
& =\overline{\left(x_{1}-m_{1}\right)}\left(x_{1}-m_{1}\right)+\left(\overline{x_{2}-m_{2}}\right)\left(x_{2}-m_{2}\right) \\
& =\overline{x_{1}} \cdot x_{1}+\overline{\left(x_{2}-m_{2}\right)}\left(x_{2}-m_{2}\right)=1
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \sum \cap g: \quad \overline{x_{1}} \cdot x_{1}+\overline{m_{2}} \cdot m_{2}=\left|x_{1}\right|^{2}+\left|m_{2}\right|^{2}=1 \\
& \text { olso } \sum \cap g=\left\{x_{1} \in \mathbb{C}| | x_{1} \mid=\sqrt{1-\left|m_{2}\right|^{2}}\right\}
\end{aligned}
$$

"Eelime in Geumshier Zorlemelume

