Differendialgleichungen UE
251)

$$
\begin{aligned}
& \binom{\dot{x}}{y}=\underbrace{\left(\begin{array}{ll}
2 & -6 \\
3 & -4
\end{array}\right)}_{A}\binom{x}{y}+\underbrace{\binom{14}{13} \sin A}_{B(1)} \\
& x(0)=x(\pi) \text { d.h. } \underbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}(0)+\underbrace{\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right)}_{D}\binom{x}{y}(\pi)=\underbrace{\binom{0}{1}}_{c}}_{c} \begin{array}{l}
y(0)=1
\end{array}
\end{aligned}
$$

- Losungedresis d. Rhom. DGL

$$
\begin{aligned}
& X_{A}(\lambda)=\lambda^{2}+2 \lambda+10=0 \Leftrightarrow \lambda=-1 \pm \sqrt{1-10}=-1 \pm 3 i \\
& \operatorname{ker}(A-(-1 \pm 3 i) E)=\operatorname{ker}\left(\begin{array}{cc}
3-3 i & -6 \\
3 & -3-3 i
\end{array}\right)=\operatorname{Ren}\left(\begin{array}{cc}
1-i & -2 \\
1 & -1-i
\end{array}\right)=\left[\binom{1+i}{1}\right] \\
& \rightarrow W(A)=T e^{+1}=\left(\binom{1+i}{1} e^{(-1+3 i) t},\binom{1-i}{1} e^{(-1-3 i) t}\right)
\end{aligned}
$$

$$
\Rightarrow \text { velle LB: }\binom{1}{1} e^{-t} \cos 3 t-\binom{1}{0} e^{-t} \sin 3 t,\binom{1}{1} e^{-t} \sin 3 t+\binom{1}{0} e^{-t} \cos 3 t
$$

$$
\begin{aligned}
& \text { IX, } 250,251,255,259,263,270 \\
& \text { 250) } \ddot{x}+(3 t-1) \dot{x}+4 x=\cos 4 \\
& x(0)=1, \dot{x}(0)=2 \\
& \Leftrightarrow \ddot{x}-\dot{x}+34 \dot{x}+4 x=\cos 4 \\
& \Rightarrow \alpha(\dot{x})(u)+\mathcal{L}(\dot{x})(u)+3 \alpha(+\dot{x})(u)+\alpha(+x)(u)=\alpha(\cos A)(u)=\frac{u}{u^{2}+1} \\
& \mathcal{L}(\dot{x})(u)=\mu \alpha(x)(u)-x(0)=\mu \alpha(x)(\mu)-1 \\
& \mathcal{L}(\ddot{x})(\mu)=\mu \mathcal{L}(\dot{x})(\mu)-\dot{x}(0)=\mu^{2} \alpha(x)(\mu)-\mathcal{L} \mu-2 \\
& \mathcal{L}(4 x)(u)=-\frac{d}{d u} \mathcal{L}(x)(u) \\
& \alpha(4 \dot{x})(u)=-\frac{d}{d u} \alpha(\dot{x})(u)=-\alpha(x)(u)-u \frac{d}{d u} \mathcal{L}(x)(u) \\
& \leadsto \mu^{2} \mathcal{L}(x)(u)-\mu-2-\mu \alpha(x)(u)+1-3 \mathcal{L}(x)(\mu)-3 \mu \frac{d}{d u} \mathcal{L}(x)(\mu)-\frac{d}{d u} \mathcal{L}(x)(\mu)=\frac{\mu}{u^{2}+1} \\
& \Leftrightarrow-(3 u+1) \dot{\mathcal{L}}(x)+\left(u^{2}-u-3\right) \mathcal{L}(x)=\frac{\mu}{u^{2}+1}+u+1
\end{aligned}
$$

- prers. Lösung

$$
\begin{aligned}
& i \neq E W \Rightarrow \text { Ansetz } x=\sigma_{1} \sin t+\tau_{1} \cos t \\
& y=\sigma_{2} \sin t+\tau_{2} \cos t \\
& \leadsto\left\{\begin{array}{l}
\sigma_{1} \cos t-\tau_{1} \sin t=2\left(\sigma_{1} \sin t+\tau_{1} \cos t\right)-6\left(\sigma_{2} \sin t+\tau_{2} \cos t\right)+14 \sin t \\
\sigma_{2} \cos t-\tau_{2} \sin t=3(-4(-13 \sin t
\end{array}\right. \\
& \Leftrightarrow\left\{\begin{array}{l}
O=\left(\tau_{1}+2 \sigma_{1}-6 \sigma_{2}+14\right) \sin t+\left(-\sigma_{1}+2 \tau_{1}-6 \tau_{2}\right) \cos t \\
0=\left(\tau_{2}+3 \sigma_{1}-4 \sigma_{2}+13\right) \sin t+\left(-\sigma_{2}+3 \tau_{1}-4 \tau_{2}\right) \cos t
\end{array}\right. \\
& \Rightarrow \varphi_{r}=\binom{-2 \sin t+2 \cos t}{2 \sin t+\cos t}
\end{aligned}
$$

2) Rondnvertyroblem

$$
\begin{aligned}
& C \cdot \varphi(0)+D \cdot \varphi(\pi)=c \Leftrightarrow C\left(W(0) \sigma+\varphi_{r}(0)\right)+D\left(W(\pi) \sigma+\varphi_{r}(\pi)\right)=c \\
& \underbrace{(C W(0)+D W(\pi))}_{R(w)} \sigma=C-\underbrace{\left(C \varphi_{r}(0)+D \varphi_{\gamma}(\pi)\right)}_{R\left(\varphi_{r}\right)} \\
& R(W)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
-e^{-\pi} & -e^{-\pi} \\
-e^{-\pi} & 0
\end{array}\right)=\left(\begin{array}{cc}
1+e^{-\pi} & 1+e^{-\pi} \\
1 & 0
\end{array}\right) \\
& R\left(\varphi_{r}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{2}{1}+\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right)\binom{-2}{-1}=\binom{4}{1} \\
& R(w) \text { regular } \Rightarrow\binom{\sigma_{1}}{\sigma_{2}}=R(w)^{-1}\left(c-R\left(\varphi_{r}\right)\right) \\
& =-\frac{1}{1+e^{-\pi}}\left(\begin{array}{cc}
0 & -1-e^{-\pi} \\
-1 & 1+e^{-\pi}
\end{array}\right)\binom{-4}{0}=\binom{0}{-\frac{4}{1+e^{-\pi}}} . \\
& \Rightarrow\binom{x}{y}=\left(\begin{array}{ll}
e^{-t} \cos 3 t-e^{-t} \sin 3 t & e^{-t} \sin 3 t+e^{-t} \cos 3 t \\
e^{-t} \cos 3 t & e^{-t} \sin 3 t
\end{array}\right)\binom{0}{-\frac{4}{1+e^{-\pi}}}+\binom{-2 \sin t+2 \cos t}{2 \sin t+\cos t}
\end{aligned}
$$

259, $x^{(3)}+\ddot{x}+\dot{x}+x=e^{-t}-1$

$$
\begin{aligned}
& x(0)=1 \\
& x(\pi)=e^{-\pi}+1 \text {, } \text {,h. }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
x \\
\dot{x} \\
\dot{x}(0)=x
\end{array}\right)(0)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
\dot{x} \\
\dot{x}
\end{array}\right)(\pi)=\left(\begin{array}{c}
1 \\
e^{-\pi}+1 \\
0
\end{array}\right) .
\end{aligned}
$$

$$
\text { Wirsen sens Byr. 243j: } \quad W(4)=\left(\begin{array}{ccc}
e^{-4} & \cos 4 & \sin 4 \\
-e^{-4} & -\sin 4 & \cos 4 \\
e^{-4} & -\cos 4 & -\sin 4
\end{array}\right)
$$

$$
R(W)=C \cdot W(0)+D \cdot W(\pi)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
e^{-\pi} & -1 & 0 \\
-e^{-\pi} & 0 & -1 \\
e^{-\pi} & 1 & 0
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
1 & 1 & 0 \\
e^{-\pi} & -1 & 0 \\
-1+e^{-x} & 0 & 2
\end{array}\right) \text { iss vegulin } \Rightarrow \exists!\text { losung des RWP. }
$$

263) $G(A, u)=W(A) \underbrace{\left(z(d, u) \cdot E-R(W)^{-1} \cdot D \cdot W(\pi)\right) \cdot W^{-1}(u)}_{=\pi(A, u)}$

$$
\Gamma_{2}(A, u)=\frac{1}{2}\left(e^{-t}, \cos t, \sin t\right)\left(\begin{array}{c}
e^{u} \\
-\cos \mu-\sin u \\
-\sin u+\cos u
\end{array}\right)+\Gamma_{1}(4, \mu)
$$

$$
=-\frac{1}{2\left(1+e^{-\pi}\right)}\left(-\left(1+e^{-\pi}\right) e^{u-4}+\left(1+e^{-\pi}\right) \cos t(\cos u+\sin u)-\left(1+e^{-\pi}\right) \sin t(\cos u-\sin u)\right.
$$

$$
\left.+e^{-t}\left(e^{\mu-\pi}+\cos \mu+\sin u\right)-\cos A\left(e^{\mu-\pi}+\cos \mu+\sin \mu\right)+\sin A\left(e^{\mu-\pi}+\cos \mu-e^{-\pi} \sin \mu\right)\right)
$$

$$
\begin{aligned}
& R(W)^{-}, D W(\pi)=\frac{1}{2\left(1+e^{-\pi}\right)}\left(\begin{array}{ccc}
2 & 2 & 0 \\
2 e^{-\pi} & 2 & 0 \\
1-e^{-\pi} & 1-e^{-\pi} & 1+e^{-\pi}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
e^{-\pi} & -1 & 0 \\
e^{-\pi} & 0 & 1
\end{array}\right) \\
& =\frac{1}{2\left(1+e^{-\pi}\right)}\left(\begin{array}{ccc}
2 e^{-\pi} & -2 & 0 \\
-2 e^{-\pi} & 2 & 0 \\
2 e^{-\pi} & e^{-\pi}-1 & 1+e^{-\pi}
\end{array}\right) \\
& W^{-1}(\mu)=\frac{1}{2}\left(\begin{array}{ccc}
e^{u} & 0 & e^{u} \\
-\sin \mu+\cos \mu & -2 \sin \mu & -\cos \mu-\sin \mu \\
\cos \mu+\sin \mu & 2 \cos \mu & -\sin \mu+\cos \mu
\end{array}\right) \\
& G(d, u)= \begin{cases}G_{(}(4, u):= & \\
W(4)\left(R(W)^{-1} D W(\pi)\right) W^{-1}(u) & 0 \leq 4<u \leq \pi \\
W(4) W^{-1}(u)+G_{1}(4, u) & 0 \leq \mu \leq 4 \leq \pi\end{cases} \\
& \Rightarrow \Gamma_{1}(A, \mu)=-\frac{1}{4\left(1+e^{-\pi}\right)} \frac{\left(e^{-t}, \cos t, \sin t\right)}{1 \cdot \operatorname{zin} \cdot \omega(t)}\left(\begin{array}{ccc}
2 e^{-\pi} & -2 & 0 \\
-2 e^{-\pi} & 2 & 0 \\
2 e^{-\pi} & e^{-\pi}-1 & 1+e^{-\pi}
\end{array}\right)\left(\begin{array}{l}
\left(\begin{array}{c}
e^{\mu} \\
-\cos \mu-\sin \mu \\
-\sin \mu+\cos \mu
\end{array}\right) \\
\cos \sin \sin \omega-W^{-r}(\omega)
\end{array}\right. \\
& =-\frac{1}{2\left(1+e^{-\pi}\right)}\left(e^{-t}\left(e^{\mu-\pi}+\cos \mu+\sin u\right)-\cos t\left(e^{\mu-\pi}+\cos \mu+\sin \mu\right)\right. \\
& \left.+\sin t\left(e^{\mu-\pi}+\cos u-e^{-\pi} \sin u\right)\right) \\
& 064<m=\pi
\end{aligned}
$$

$$
270, x+2 \dot{x}-8 x+\lambda x=0
$$

$$
\begin{aligned}
& x(1)=0 \\
& \dot{x}(0)=0
\end{aligned}
$$

Chor. Bolynoom d. aqu. Systems 1. Ondmung:

$$
x_{A}(x)=x^{2}+2 x-8+\lambda=0 \Leftrightarrow x=-1 \pm \sqrt{1+8-\lambda}=-1 \pm \sqrt{9-\lambda}
$$

1.Eall:

$$
9-\lambda>0 \Leftrightarrow \lambda<9
$$

Sei $a:=\sqrt{9-\lambda}>0 \Rightarrow \varphi(A)=\sigma_{1} e^{(-1+\Omega) t}+\sigma_{2} e^{(-1-a) t}$

$$
\begin{aligned}
R B & \approx\left\{\begin{array}{l}
\varphi(1)=\sigma_{1} e^{-1+a}+\sigma_{2} e^{-1-a}=0 \Leftrightarrow \sigma_{1}=-\sigma_{2} e^{-2 a} \\
\dot{\varphi}(0)
\end{array}=(-1+a) \sigma_{1}+(-1-a) \sigma_{2}=0\right. \\
& \leadsto \underbrace{(1-a)}_{\leqslant 1} \sigma_{2} \underbrace{e^{-2 a}}_{\leqslant 1} \underbrace{(+1+Q)}_{=1} \sigma_{2} \Leftrightarrow a=0 \text { invS } \Rightarrow \sin \lambda<9 \text { eisias }
\end{aligned}
$$

Beine nichs thisinele dossung.
2. Fell: $\lambda=9 \Rightarrow-1$ ist doppelh EW

$$
\begin{aligned}
& \Rightarrow \varphi(1)=\sigma_{1} e^{-4}+\sigma_{2}+e^{-t} \\
& R B \sim\left\{\begin{array}{l}
\varphi(1)=\sigma_{1} e^{-1}+\sigma_{2} e^{-1}=0 \Leftrightarrow-\sigma_{1}=\sigma_{2} \\
\dot{\varphi}(0)=-\sigma_{1}+\sigma_{2}=0 \Leftrightarrow \sigma_{1}=\sigma_{2}
\end{array} \quad \Rightarrow \sigma_{1}=\sigma_{2}=0 .\right.
\end{aligned}
$$

3. Eall:

$$
\begin{aligned}
& 9-\lambda<0 \Leftrightarrow \lambda>9 \quad \text { d.h. } x=-1 \pm \sqrt{9-\lambda}=-1 \pm \underbrace{\sqrt{\lambda-9}}_{=:-6 \times 0} i \\
& \Rightarrow \varphi(1)=\sigma_{1} e^{-4} \cos b 4+\sigma_{2} e^{-4} \sin b 4 \\
& R \sigma^{\prime}(A)=-\sigma_{1} e^{-4} \cos b t-b \sigma_{1} e^{-4} \sin b t-\sigma_{2} e^{-1} \sin b 4+b \sigma_{2} e^{-4} \cos b t \\
& R B \sim \varphi(1)=\sigma_{1} e^{-1} \cos b+\sigma_{2} e^{-1} \sin b=0 \\
& \dot{\varphi}(0)=-\sigma_{1}+b \sigma_{2}=0 \Leftrightarrow \sigma_{1}=b \sigma_{2} \\
& \leadsto b \sigma_{1} e^{-1} \cos b+\sigma_{2} e^{-1} \sin b=0 \Leftrightarrow \sqrt{\lambda-9} \cos \sqrt{\lambda-9}+\sin \sqrt{\lambda-9}=0 \quad(\lambda>9)
\end{aligned}
$$

