Aralysis 3 UE

$$
\begin{aligned}
& \text { XI, } 92.0) \mathcal{f}_{1}(x):=\mathbb{1}_{[-0,0]}(x) \\
& \text { (i) ges: } \hat{f}_{1}(x) \\
& \hat{f}_{1}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i t x} d t=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-i t x} d t \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-a}^{a} \cos t x-i \sin t x d A \\
& =\frac{1}{\sqrt{2 \pi}}(\left.\frac{\sin t x}{x}\right|_{t=-a} ^{a}+i \underbrace{\left.\frac{\cos t_{x}}{x}\right|_{t=-\infty} ^{a}}_{0})=\sqrt{\frac{2}{\pi}} \frac{\sin \omega x}{x}
\end{aligned}
$$

(ii) $\hat{f}_{1} \in L_{1}$?

$$
\begin{aligned}
& \frac{1}{Q} \int_{\mathbb{R}}\left|\hat{f}_{1}(x)\right| d \lambda(x)=\int_{\mathbb{R}}^{*}\left|\frac{\sin \otimes x}{\theta x}\right| d \lambda(x)=\sqrt{\frac{2}{\pi}} \frac{1}{\theta} \int_{\mathbb{R}}\left|\frac{\sin y}{y}\right| d \lambda(y)>\infty \text { en. Bys. } \\
& \Rightarrow \hat{q}_{1} \notin L_{1}
\end{aligned}
$$

(iii) $\hat{f}_{1} \in L_{2}$?

$$
\left\|f_{1}\right\|_{2}^{2}=\int_{\mathbb{R}} \frac{\sin ^{2} \theta x}{x^{2}} d \lambda(x)=2 \underbrace{\int_{0}^{1} \frac{\sin ^{2} \theta x}{x^{2}} d x}_{R-\sin \text {, de on } 0}+\underbrace{\int_{1}^{\infty} \frac{\sin ^{2} \theta x}{x^{2}} d x}<\infty .
$$

b) $f_{2}(x):=\operatorname{sgn}(x) \mathbb{1}_{[-1,1]}(x)$
(i) ges.: $\hat{f}_{2}(x)$

$$
\begin{array}{rl}
\hat{f}_{2}(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i t x} d t=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} \operatorname{sgn}(t) e^{-i t x} d t \\
& =\frac{1}{\sqrt{2 \pi}}\left(\int_{-1}^{0}-e^{-i t x} d t+\int_{0}^{1} e^{-i+x} d t\right) \\
& =\frac{1}{\sqrt{2 \pi}}(\left.\underbrace{\frac{\sin t x}{x}}_{\frac{\sin x}{x}}\right|_{t=0} ^{1}
\end{array}+\left.i \underbrace{\frac{\cos t x}{x}}_{\frac{\cos x-1}{x}}\right|_{t=0} ^{1}-\left.\underbrace{x}_{-\frac{\sin x-x)}{x}}\right|_{t=-1} ^{0}-\left.i \frac{\cos t x}{x}\right|_{t=-1} ^{0}+\frac{1-\cos (-x)}{x}) ~\left(\frac{\sin }{x} i \frac{\cos x-1}{x}\right)
$$

$$
\text { (ii) } \begin{aligned}
& \hat{f}_{2} \in L_{1} ? \\
& \int_{\mathbb{R}} \mid\left|\frac{\cos x-1}{x}\right|
\end{aligned} d \lambda(x)=2 \int_{\mathbb{R}^{+}} \frac{1-\cos x}{x} d \lambda(x)=2 \sum_{k=0}^{\infty} \int_{[k \pi,(k+2) \pi]} \frac{1-\cos x}{x} d \lambda(x) .
$$

$$
\text { (iii) } \begin{aligned}
& \hat{f}_{2} \in L_{2}{ }^{2} \\
& \int_{\mathbb{R}} \frac{(1-\cos x)^{2}}{x^{2}} d \lambda(x)=2 \int_{\mathbb{R}^{+}} \frac{(1-\cos x)^{2}}{x^{2}} d \lambda(x) \\
&=2(\underbrace{\int_{0}^{1} \frac{(1-\cos x)^{2}}{x^{2}} d x}_{R-\operatorname{sed}, \lim _{x \rightarrow 0}=0}+\underbrace{\infty}_{\leqslant \int_{n}^{\infty} \frac{4}{x^{2}} d x=4} \frac{(1-\cos x)^{2}}{x^{2}} d x)<\infty
\end{aligned}
$$

$$
\begin{aligned}
\text { 93jo) } f(x): & =e^{-x} \mathbb{1}[0, \infty)(x) \\
\text { ges: } & \hat{f}(x) \\
\hat{f}(x) & =\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-t} e^{-i t x} d t=\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-t(1+i x)} d t \\
& =\frac{1}{\sqrt{2 \pi}}-\frac{1}{1+i x} \underbrace{\left.e^{-t(1+i x)}\right|_{t=0} ^{\infty}=\frac{1}{\sqrt{2 \pi}} \frac{1}{1+i x}}_{-1}
\end{aligned}
$$

6) Bestimme mittels Progr. 14.1.2 $\operatorname{sgn}(x) e^{-|x|}$.

$$
\begin{aligned}
\operatorname{sgn}(x) e^{-|x|} & =e^{-x} \mathbb{1}_{(0, \infty)}(x)-e^{x} \mathbb{1}_{(-\infty, 0)}(x)
\end{aligned} e^{-x} \mathbb{\|}_{(0, \infty)}(x)-e^{e^{x} \underbrace{\mathbb{1}_{(-\infty, 0)}(x)}_{=1}}\left(\begin{array}{l}
(0, \infty) \\
(-x)
\end{array}\right.
$$

97) seif steding; $f, \hat{\&} \in L_{1}(\mathbb{R})$.
ges: Eunbtionen $a(\lambda)$, $b(\lambda)$ sodos gilt:

$$
u(x, 0)=\int_{0}^{\infty}(Q(\lambda) \cos (\lambda x)+b(\lambda) \sin (\lambda x)) d \lambda=f(x) \quad \forall x \in \mathbb{R} .
$$

Es gilt $\int_{0}^{\infty} a(\lambda) \cos \lambda x d \lambda=\frac{1}{2} \int_{-\infty}^{\infty} a(|\lambda|) \cos \lambda x d \lambda$,

$$
\begin{aligned}
& \int_{0}^{\infty} b(\lambda) \sin \lambda x d \lambda-\frac{1}{2} \int_{-\infty}^{\infty} b(|\lambda|) \operatorname{sgn}(\lambda) \sin \lambda x d \lambda \\
\Rightarrow & \mu(x, 0)=\frac{1}{2} \int_{-\infty}^{\infty} \varepsilon(|\lambda|) \cos \lambda x+b(|\lambda|) \operatorname{sgn}(\lambda) \sin \lambda x d \lambda
\end{aligned}
$$

Unter Bericksichtigung von $e^{-i \lambda x}=\cos \lambda x-i \sin \lambda x$ und unter Annshme der Reellneutigkeid von $c(\lambda)$ lions sich dos folgendemoß̉en ansherben:

$$
\begin{aligned}
& \mu(x, 0)=\frac{x}{x} \int_{-\infty}^{\infty} \operatorname{Re}\left(c(\lambda) e^{-i \lambda x}\right) d \lambda \text { noblei } c(\lambda)=a(|\lambda|)+i \operatorname{sgn}(\lambda) b(|\lambda|) \\
& = \begin{cases}\frac{1}{2}(a(-\lambda)-i b(-\lambda)) & \lambda<0 \\
\frac{1}{2}(a(\lambda)+i b(\lambda)) & \lambda>0 \\
\frac{1}{2} a(0) & \lambda=0\end{cases} \\
& \Rightarrow u(x, 0)=\frac{1}{2} \int_{-\infty}^{\infty}(c(\lambda) e^{-i \lambda x}+\underbrace{\frac{c(\lambda) e^{-i \lambda x}}{c}}_{c(\lambda) e^{i \lambda x}}) d \lambda \\
& =\frac{1}{2}\left(\int_{-\infty}^{\infty} c(\lambda) e^{-i \lambda x} d \lambda+\int_{-\infty}^{\infty} c(\lambda) e^{i \lambda x} d \lambda\right)=\sqrt{\frac{\pi}{2}}(\hat{c}(x)+\underbrace{\hat{c}(-x)}){ }^{\frac{\sqrt{2 \pi}}{}} \operatorname{Re}(\hat{c}(x))=f(x) \\
& =(\hat{c})(-x) \times \overline{\hat{c}(x)}
\end{aligned}
$$

Gleichung exfüled fin $\hat{c}(x)=f(x) \Leftrightarrow c(-x)=\hat{c}(x)=\hat{f}(x) \frac{1}{\sqrt{2 \pi}}$

$$
\Leftrightarrow c(x)=\hat{f}(-x) \frac{1}{\sqrt{2 \pi}}
$$

$a(\lambda):=(\hat{f}(\lambda)+\hat{f}(-\lambda)), \quad b(\lambda):=\frac{\frac{1}{\sqrt{2 \pi}}}{\sqrt{2 \pi}} i(\hat{f}(\lambda)-\hat{f}(-\lambda))$ leisten tuen dos Genaünschte.
98. a) ZZ: Eunkstion ans 97 lisnt sich scheiben sels $u(x, t)=\frac{1}{2 \sqrt{\pi t}} \int_{\mathbb{R}} f(z) e^{-\frac{(2-x)^{2}}{4 t}} d z$. Sei $t>0$.

$$
\begin{aligned}
\Rightarrow \mu(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty}([\hat{f}(\lambda)+\hat{f}(-\lambda)] \cos \lambda x+i[\hat{f}(\lambda)-\hat{f}(-\lambda)] \sin \lambda x) e^{-\lambda^{2} t} d \lambda \\
& =\frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \hat{f}(\lambda)[\cos \lambda x+i \sin \lambda x] e^{-\lambda^{\psi} t}+\hat{f}(-\lambda)[\cos \lambda x-i \sin \lambda x] e^{-\lambda^{2} t} d \lambda \\
& =\frac{1}{\sqrt{2 \pi}}\left(\int_{0}^{\infty} \hat{f}(\lambda) e^{i \lambda x} e^{-\lambda^{2} t} d \lambda+\int_{0}^{\infty} \hat{f}(-\lambda) e^{-i \lambda x} e^{-\lambda^{2} t} d \lambda\right. \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(\lambda) e^{i \lambda x} e^{-\lambda^{2} t} d \lambda \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(z) e^{-i z \lambda} d z\right) e^{i \lambda x} e^{-\lambda^{2} t} d \lambda
\end{aligned}
$$

Fubin: $\left|f(a) e^{-i|z \times x| 1-x^{6} \mid}\right|$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \cos (\lambda(z-x)) e^{-\lambda^{2} t} d \lambda=2 \int_{0}^{\infty} \cos (\lambda(z-x)) e^{-\lambda^{2} t}=\sqrt{\frac{\pi}{t}} e^{-\frac{(z-x)^{2}}{4 t}} \\
& \int_{-\infty}^{\infty} \sin (\lambda(z-x)) e^{-\lambda^{2} t} d \lambda=\int_{R} \sin (\lambda(z-x)) e^{-\lambda^{2} t \in \infty}|<| \lim _{[-N, N]} \\
& \text { Leangre } \\
& \stackrel{\lim _{N \rightarrow \infty} \underbrace{}_{=0 \text {, du ungende } F R A .} \int_{\left[-N_{1} N\right]} \sin (\lambda(z-x)) e^{-\lambda^{2} t}}{=0} \\
& \Rightarrow \mu(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(z) \sqrt{\frac{\pi}{t}} e^{-\frac{\left(z-x^{2}\right.}{4 t}} d z \\
& =\frac{1}{2 \sqrt{\pi t}} \int_{-\infty}^{\infty} f(z) e^{-\frac{(z-x)^{2}}{4 t}} d z=\frac{1}{2 \sqrt{\pi t}} \int_{\mathbb{R}} f(z) e^{-\frac{(z-x)^{2}}{4 t}} d z .
\end{aligned}
$$

b) ZZ: Die Eunksion erfüllt die DGL $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$.

Fin $t_{0}>0$ und $\bar{\delta} \in\left(0, t_{0}\right)$ gils

$$
\left.\begin{array}{rl}
\left|\frac{\partial}{\partial t} f(z) e^{-\frac{(z-x)^{2}}{4 t}}\right|=\left\lvert\, f(z) e^{-\frac{(z-x)^{2}}{4 t}}\right. & \left.\frac{(z-x)^{2}}{4 t^{2}} \right\rvert\,
\end{array} \leqslant|f(z)| \frac{1}{(2 t)^{2}} f(z-x)^{2} e^{-\frac{(z-x)^{2}}{4 t}}\right) .
$$

Weidens gilt

Es axistiert also lobol eine L-Majorante, daher gilt et. Lemma 13.1.10:

$$
\frac{\partial u}{\partial t}=-\frac{1}{4 \sqrt{\pi} t^{+3 / /}} \int_{\mathbb{R}} f(z) e^{-\frac{(z-x)^{2}}{4 t}} d z+\frac{1}{2 \sqrt{\pi t}} \int_{\mathbb{R}} f(z) e^{-\frac{(z-x)^{2}}{4 t}} \frac{(z-x)^{2}}{4 t^{2}} d z
$$

Eir $x_{0} \in[0, e]$ gilt

$$
\begin{aligned}
\left\lvert\, \frac{\partial}{\partial x} f(z)\right. & e^{-\frac{(z z-x)^{2}}{4 t}}\left|=\left|f(z) e^{-\frac{(z-x)^{2}}{4 t}} \frac{z-x}{2 t}\right| \leqslant=|f(z)| e^{-\frac{(z-x)^{2}}{4 t}} \frac{|z-x|}{2 t}\right. \\
& \leqslant|f(z)| e^{-\frac{\left.\min t\left(z-\left(x_{0}-\delta\right)\right)^{2},\left(z-\left(x_{0}+\delta\right)\right)^{2}\right\}}{4 t}} \cdot \frac{\operatorname{mox}\left\{\left|z-\left(x_{0}-\delta\right)\right|,\left|z-\left(x_{0}+\delta\right)\right|\right\}}{2 t} \forall \times \in\left(x_{0}-\delta_{1}, x_{0} \delta\right)
\end{aligned}
$$

Wiedeum gilt

$$
\|\cdots\|_{1} \leqslant\|f\|_{1} \cdot\left\|\frac{z-x_{1}}{2 t} e^{-\frac{\left(z-x_{2}\right)^{2}}{46}}\right\|_{\infty}<\infty
$$

und somit el Semme:

$$
\frac{\partial u}{\partial x}=\frac{1}{2 \sqrt{\pi t}} \int_{\mathbb{R}} f(z) e^{-\frac{(z-x)^{2}}{4 t}} \frac{z-x}{2 t} d z
$$

Anolog:

$$
\begin{aligned}
& \left|\frac{\partial}{\partial x} f(z) e^{-\frac{(z-x)^{2}}{4 t}} \frac{z-x}{2 t}\right|=|f(z)| e^{-\frac{(z-x)^{2}}{4 t}} \frac{1}{2 t}\left|\frac{(z-x)^{2}}{2 t}-1\right| \\
& \leqslant|f(z)| e^{-\frac{(z-x)^{2}}{4 t}} \frac{1}{2 t}\left(\frac{(z-x)^{2}}{2 t}+1\right) \leqslant|f(z)| e^{-\frac{\min x}{4 t}} \frac{1}{2 t}\left(\frac{\operatorname{mox} \cdots}{2 t}+1\right) \quad \forall x \in\left(x_{0}-\delta_{1}, x_{0}+\delta\right) \\
& \|\cdots\|_{1} \leqslant\|\&\|_{1} \cdot\left\|e^{-\frac{\left(z-x_{1}\right)^{2}}{/}} \frac{1}{2 t}\left(\frac{\left(z-x_{1}\right)^{2}}{2 t}+1\right)\right\|_{\infty}<\infty \\
& \Rightarrow \frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{2 \sqrt{\pi t}} \int_{\mathbb{R}} f(z) e^{-\frac{(z-x)^{2}}{4 t}} \frac{1}{2 t}\left(\frac{(z-x)^{2}}{2 t}-1\right) d z \\
& =\frac{1}{2 \sqrt{\pi t}} \int_{R} f(z) e^{-\frac{(z-x)^{2}}{4 t}} \frac{(z-x)^{2}}{4 t^{2}} d z-\frac{1}{4 \sqrt{\pi} t^{3 / 2}} \int_{\mathbb{R}} f(z) e^{-\frac{(z-x)^{2}}{4 t}} d z=\frac{\partial u}{\partial t} .
\end{aligned}
$$

Z28. Sei $C_{y}:=\left\{(x, y)^{\top} \in \mathbb{R}^{2}: x^{2}+y^{2}<1, y \neq 0\right\}, h=\binom{h_{1}}{h_{2}}: \bar{G} \rightarrow \mathbb{R}^{2}$ stesing, $\left.h\right|_{g} \in C^{1}$.

$$
\underline{Z Z}: \int_{G} \operatorname{div} h d \lambda_{2}=\int_{\partial^{\sigma} g} v(u)^{\top} h(u) d \operatorname{pog}_{g}(u)
$$

Def.: $G_{+}:=\left\{(x, y)^{\top} \in \mathbb{R}^{2}: x^{2}+y^{2}<1, y>0\right\}$,

$$
\begin{aligned}
& g_{-}:=\{[, y<0\} \text {, } \\
& \mathcal{G}^{*}:=(-1,1) \times\{0\}
\end{aligned}
$$

- G+ offen, becchuänst
$\left.\Rightarrow R\right|_{\bar{y}_{+}}: \overline{G_{+}} \rightarrow \mathbb{R}^{2}$ ssedig ols Einsehu.
$\left.h\right|_{\text {g+ }}$ ols Einstrionsung C^{1}

$$
\begin{aligned}
& \text { 0) syyp }\left.h\right|_{\bar{g}_{+}} \subseteq \overline{g_{+}}=C_{+} \cup \partial^{\circ} g_{+} \cup L \text { mit } L=\left\{(-1,0)_{1}^{\top}(1,0)^{\top}\right\} \quad \Rightarrow \text { Zusarbed. erf.) } \\
& \text { Gours } \Rightarrow \int_{g_{+}^{*}} \text { div } h d \lambda_{2}=\int_{\partial^{0} g_{+}} v_{g_{+}}^{\top} h d \mu_{\partial 0} g_{+}
\end{aligned}
$$

Analoges gilt fin G..

$$
\begin{aligned}
& \Rightarrow \int_{C^{\prime}} \operatorname{div} h d \lambda_{2}=\int_{g_{+}} \operatorname{div} h d \lambda_{2}+\int_{g_{-}} \operatorname{div} h d \lambda_{2} \\
& =\int_{\partial y_{+}} v_{\partial g_{+}}^{\top} h d \gamma z_{+y_{+}}+\int_{\partial y_{-}} v_{\partial g_{-}}^{\top} h d \mu \partial g_{-}
\end{aligned}
$$

Z33. μ endlishes, posidives Borelmars anf \mathbb{R}, $\operatorname{def} . \hat{\mu}(z):=\int_{\mathbb{R}} e^{-i x z} \operatorname{d\mu }(x), z \in \mathbb{R}$. Q)(i) ZZ: $\hat{\mu}$ bexhuänßt, $\|\hat{\mu}\|_{\infty} \leq\|\mu\|:=\mu(\mathbb{R})$.

$$
\begin{aligned}
& |\hat{\mu}(z)|=\left|\int_{\mathbb{R}} e^{-i x z} d \mu(x)\right| \leqslant \int_{\mathbb{R}}\left|e^{-i x z}\right| d \mu(x)=\mu(\mathbb{R})<\infty \quad \forall z \in \mathbb{R} \\
& \Rightarrow\|\hat{\mu}\|_{\infty} \leqslant\|\mu\| .
\end{aligned}
$$

(ii) ZZ: $\hat{\mu}$ steting

$$
\begin{aligned}
& \text { ण) } x \mapsto e^{-i \times z} \text { inthon } \\
& \text { ण } z \mapsto e^{-i x z} \text { sedig }
\end{aligned}
$$

$$
\text { - } 1 \text { is globale, von } x \text { unalh. } L^{1}(\mathbb{R}, \mu) \text {-Majonante }
$$

$\Rightarrow \hat{\mu}$ stesing.
b) ges: MoAs μ, sodon $\hat{\mu} \nsubseteq C_{0}(\mathbb{R})$

$$
\begin{aligned}
& \text { Def. } \mu(A)= \begin{cases}1 & 0 \in A \\
0 & \text { sonst }\end{cases} \\
& \Rightarrow \hat{\mu}(z)=e^{-i x z} \mathbb{1}_{\{03}(x)=e^{-i O z}=1 \text { NRC(IE) } \forall z \in \mathbb{R} \\
& \Rightarrow \hat{\mu} \notin C_{0}(\mathbb{R})
\end{aligned}
$$

c) ZZ: $t_{1, \ldots}, t_{n} \in \mathbb{R}, n \in \mathbb{N} \Rightarrow \operatorname{Mahix}\left(\hat{\mu}\left(t_{j}-t_{i}\right)\right)_{i, j=1}^{n}$ josisio semidefinit.
$A \in \mathbb{R}^{n \times n}$ ist pos semidef., nerm $\bar{a}^{\top} \cdot A \cdot Q \geqslant 0 \quad \forall a \in \mathbb{C}^{n}$

$$
\begin{aligned}
\bar{a}^{T}\left(\hat{\mu}\left(t_{j}-t_{i}\right)\right)_{i, j=1}^{n} a & =\sum_{i=1}^{n} \sum_{j=1}^{n} \bar{a}_{i} \hat{\mu}\left(t_{j}-t_{i}\right) a_{j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \int_{i \mathbb{R}} \overline{a_{i}} a_{j} e^{-i x\left(t_{j}-t_{i}\right)} d \mu(x) \\
& =\int_{\mathbb{R}} \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{a_{i}} e^{i x t_{i}} v_{j} e^{-i x t_{j}} d \mu(x) \\
& =\int_{\mathbb{R}}\left(\sum_{i=1}^{n} \overline{a_{i} e^{-i x t_{i}}}\right) \cdot\left(\sum_{j=1}^{n} a_{j} e^{-i x t_{j}}\right) d \mu(x) \\
& =\int_{\mathbb{R}}|\sum_{j=1}^{n} \underbrace{}_{j} e^{-i x t_{j}}|^{2} d \mu(x) \geqslant 0 .
\end{aligned}
$$

Z30. Sei $\gamma \in[1, \infty), f \in L^{\gamma}(\mathbb{R}), g(x):=\int_{(x, x+1)} f(t) d \lambda(t)$
ZZ: $g \in C_{0}(\mathbb{R})=\left\{h \in C(\mathbb{R}): \lim _{|x| \rightarrow \infty} h(x)=0\right\}$
a, $z z: \quad g \in C(\mathbb{R})$

$$
\begin{aligned}
& |g(x)-g(y)|=\left|\int_{\mathbb{R}} f(t) \mathbb{1}_{(x, x+1)}(t) d \lambda(t)-\int_{\mathbb{R}} f(t) \mathbb{1}_{(y \mid y+1)}(t) d \lambda(t)\right| \\
& \leqslant \int_{\mathbb{R}}|f(t)|\left|\mathbb{1}_{\left(x_{x} \times+1\right)}(t)-\mathbb{1}_{\left(y_{i}, y^{+1)}\right.}(t)\right| d \lambda(t) \\
& =\int_{i R}|f(t)| \underbrace{\mathbb{I}_{\left(x_{1} x+1\right)} \Delta\left(y_{g} g+1\right)}_{=A} \text { (t)d } d \lambda(t)
\end{aligned}
$$

Fin $|x-y|<\delta<1$ gilt:

$$
\begin{aligned}
& \lambda(A)=\lambda((x, x+1) \Delta(y, y+1))=\lambda((x \wedge y, x v y] \cup[x+1 \wedge y+1, x+1 \vee y+1)) \\
&=2(x v y-x \wedge y)<2(x+\delta-(x-\delta))=4 \delta \\
&\quad(1+1)(x v i n)) \\
& \Rightarrow|g(x)-g(y)|<\|f\|_{\gamma}(4 \delta)^{1-\frac{1}{\gamma}}<\varepsilon \quad \forall y \in(x-\delta, x+\delta) \text { mit } \delta<\frac{1}{4}\left(\frac{\varepsilon}{\|f\|_{v}}\right)^{\frac{p}{r-1}} .
\end{aligned}
$$

6, $z z: \lim _{x \rightarrow \pm \infty} g(x)=0$

$$
\begin{aligned}
f \in L^{r}(\mathbb{R}), \gamma \in[1, \infty) & \Rightarrow\|f\|_{r^{r}}^{r}=\int_{\mathbb{R}}|f|^{v} d x<\infty \\
& \Rightarrow \lim _{x \rightarrow \infty}|f(x)|^{r}=0 \Rightarrow \lim _{x \rightarrow \infty}|f(x)|=0
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \lim _{x \rightarrow \infty}|g(x)| & =\lim _{x \rightarrow \infty}\left|\int_{(x, x+1)} f(t) d \lambda(t)\right| \leq \lim _{x \rightarrow \infty} \int_{\mathbb{R}}|f(t)| \mathbb{1}_{(x, x+1)}(t) d \lambda(t) \\
& \leqslant \lim _{x \rightarrow \infty} \operatorname{sug}_{t \in(x, x+1)}|f(t)| \cdot \underbrace{\lambda((x, x+1))}_{1} \\
& \leqslant \lim _{x \rightarrow \infty} \operatorname{sug}_{t \rightarrow x}|f(t)|=\lim _{x \rightarrow \infty} \operatorname{sum}_{x}|f(x)|=\lim _{x \rightarrow \infty}|f(x)|=0 .
\end{aligned}
$$

$\lim _{x \rightarrow-\infty}|g(x)|=0$ anolog.

Z3. Seien $j, q \in[1, \infty], \frac{1}{\gamma}+\frac{1}{q}=1 ; \quad f \in L^{f}\left(\mathbb{R}^{d}\right), g \in L^{q}\left(\mathbb{R}^{d}\right)$.
a) $z z: t \rightarrow f(x-t) g(t)$ intlen $\forall x \in \mathbb{R}^{d},\|f * g\|_{\infty} \leqslant\|f\|_{g} \cdot\|g\|_{q}$.

$$
\Rightarrow\|f * g\|_{\infty} \leq\|f\|_{\gamma} \cdot\|g\|_{q}
$$

b, zz: $f * g$ ghm. stetig

$$
\begin{aligned}
\left|f * g\left(x_{1}\right)-f+g\left(x_{2}\right)\right| & \leqslant \int_{\mathbb{R}^{d}}\left|f\left(x_{1}-t\right) g(t)-f\left(x_{2}-t\right) g(t)\right| d \lambda_{d}(t) \\
& =\int_{\mathbb{R}^{d}}\left|f\left(x_{1}-t\right)-f\left(x_{2}-t\right)\right||g(t)| d \lambda_{d}(t) \\
& \leqslant\left(\int_{\mathbb{R}^{d}}\left|f\left(x_{1}-t\right)-f\left(x_{2}-t\right)\right|^{\gamma} d \lambda_{d}(t)\right)^{\frac{1}{p}} \cdot\|g\|_{q} \\
& =\left(\int_{\mathbb{R}^{d}} \left\lvert\, f\left(z-\left(x_{2}-x_{1}\right)|-f(z)|^{\gamma-1} d \lambda_{d}(t)\right)^{\frac{1}{r}} \cdot\|g\|_{q}\right.\right. \\
& =\left\|f_{x_{1}-x_{2}}-f\right\|_{q}\|g\|_{q}
\end{aligned}
$$

. f_{t} ist es Kor. 13.3 .6 ghm . Sesig, d.h.

$$
\begin{aligned}
& \forall \varepsilon>0 \quad \exists \delta>0:\left\|x_{1}-x_{2}\right\|<\delta \Rightarrow\left\|f_{x_{1}-x_{2}}-f\right\|<\frac{\varepsilon}{\|g\|_{9}} x_{1}=1 x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& =\|f\|_{\gamma} \cdot\|g\|_{q}<\infty \quad \forall x \in \mathbb{R}^{d}
\end{aligned}
$$

