11.3.10

$$\begin{aligned} & \text{Analysis 3 UE} \\ \text{I, } & \text{I, } \langle x, d \rangle \text{ meds. Reum} \\ & \hat{d}(x,g) = \frac{dl_{xg}}{1+d(xg)} \quad x,g \in x. \\ & \overline{22:} \quad a) \quad \hat{d} \text{ int Meduk and } x. \\ & \text{B, } \text{ for gield } \hat{d}(x,g) \in [0,1] \quad \forall x,g \in x. \\ & \text{B, } \text{ for gield } \hat{d}(x,g) \in [0,1] \quad \forall x,g \in x. \\ & \text{A, } 0) \quad \hat{d}(x,g) \geq 0, \text{ da } d(x,g) \geq 0 \\ & \text{I, } \hat{d}(x,g) = 0 \quad \text{ do } d(x,g) \geq 0 \\ & \text{I, } \hat{d}(x,g) = 0 \quad \text{ do } d(x,g) = 0 \quad \text{ do } x = g \\ & 2) \quad \hat{d}(x,g) = \hat{d}(y,x), \text{ da } d(x,g) = d(y,x). \\ & \text{3, } \text{ Diviebunglecolog:} \\ & \hat{d}(x,g) = \frac{d(x,g)}{1+d(xg)} = 1 - \frac{1}{1+d(x,g)} \\ & \text{ d}(x,g) = \frac{d(x,g)}{1+d(xg)} + \frac{d(x,g)}{1+d(xg)} + \frac{d(x,g)}{1+d(xg)} \\ & \text{ d}(x,g) = \frac{d(x,g)}{1+d(xg)} = \hat{d}(x,g) + \hat{d}(x,g). \\ & \text{ d}(x,g) = \lim_{n \to \infty} \hat{d}(x,g) = \lim_{n \to \infty} 1 - \frac{1}{1+d(xg)} = 1 \\ & \hat{d}(x,g) = \lim_{n \to \infty} \hat{d}(x,g), \text{ da } \frac{d}{dgl(xg)} \quad \hat{d}(x,g) = \frac{1}{4 \underbrace{dtmgg}} \rightarrow 0. \\ & \text{ d}(x,g) = [0,1] \quad \forall x,g \in x. \end{aligned}$$

2.
$$\langle X_n, d_n \rangle n \in \mathbb{N}$$
 meth. Reime.
 $(C_n)_{n \in \mathbb{N}}, (\overline{C}_n)_{n \in \mathbb{N}}, \overline{\operatorname{Edgm}}$ geodice: Zeklin med $C_n \neq 0$. Bre. $\sum_{n \in \mathbb{N}}^{\infty} \widetilde{C}_n \leq \infty$
 $d, \widetilde{A} : (\prod_{n \in \mathbb{N}} X_n)^2 \rightarrow \mathbb{R};$
 $d(f, g) := \max_{n \in \mathbb{N}} [C_n : d_n(f_n, g_n)]$
 $\widetilde{A}(f, g) := \max_{n \in \mathbb{N}} [C_n : d_n(f_n, g_n)]$
 $\widetilde{A}(f, g) := \sum_{n \in \mathbb{N}}^{\infty} \widetilde{C}_n \ d_n(f_n, g_n)$
 $f^+(f_n)_{n \in \mathbb{N}}, g^+(g_n)_{n \in \mathbb{N}}$
 $\overline{Z} : d, \widetilde{A}$ and Mediken.
0) $d(f, g) \approx 0 \land d(f, g) < \infty /$
 $\widetilde{A}(f, g) \approx 0 \land d(f, g_n) = 0 \quad \forall n \in \mathbb{N} \quad \Re_n(f_n, g_n) \leq \widetilde{C}_n$.
1) $d(f, g) = 0 \Rightarrow c_n d_n(f_n, g_n) = 0 \quad \forall n \in \mathbb{N} \quad \Re_n f_n \in \mathbb{N} \quad \Re_n \in \mathbb{P}^2 g$
 $\widetilde{A}(f, g) = 0 \Rightarrow c_n d_n(f_n, g_n) = 0 \quad \forall n \in \mathbb{N} \quad \Re_n f_n \in \mathbb{N} \quad \Re_n \in \mathbb{P}^2 g$
 $\widetilde{A}(f, g) = 0 \Rightarrow f^+ g \quad \operatorname{enelog}.$
2) $d(f, g) = d(g, f) / \widetilde{A}(f, g) - \widetilde{A}(g, f) /$
3) Devicebrangleicleng:
 $d(f, g) = \min_{n \in \mathbb{N}} [C_n \ d_n(f_n, f_n)]$
 $= \max_{n \in \mathbb{N}} [C_n \ d_n(f_n, f_n)] + \max_{n \in \mathbb{N}} [C_n \ d_n(f_n, g_n)]$
 $= d(f, g) + \max_{n \in \mathbb{N}} [C_n \ d_n(f_n, g_n)]$
 $= d(f, g) + \sum_{n \in \mathbb{N}} \widetilde{C}_n \ d_n(f_n, g_n)$
 $= d(f, g) + \widetilde{C}_n \ d_n(f_n, g_n)$

Sei Einaußt op Gel, dem def. dem gradiophen Bedag von
$$x \in \mathbb{Z}$$
 als
 $|x|_{F} = g^{-n(g)}$ find $x = \pm \prod_{q \neq m} q^{n(q)} + O$ form. $|O|_{F} = O$
Norme die gradiophe Hedrik auf No
deg. $(x,g) = |x - g|_{F}$. $(x, g \in N_{O})$
3. ZZ: deg. ind derbeichlich Hedrik, sogen eine Ukhamedrik.
O: deg. $(x,g) = O$
1) $d_{(g)}(x,g) = O$
2) $d_{(g)}(x,g) = O$
3. deg. $(x,g) = O$
4. deg. $(x,g) = O$
5. deg. $(x,g) = d_{(g)}(y,x)$ de $x - y$ and $-(x-g)$ desette Eimfelderenzet:
6. deg. $(x,g) = d_{(g)}(y,x)$ de $x - y$ and $-(x-g)$ desette Eimfelderenzet:
6. deg. $(x,g) = d_{(g)}(y,x)$ de $x - y$ and $-(x-g)$ desette Eimfelderenzet:
6. deg. $(x,g) = d_{(g)}(x,g) = d_{(g)}(x,g)$
5. deg. $(x,g) = d_{(g)}(x,g)$
5. deg.

4.
$$\langle \mathbb{N}_{0}, d_{igi} \rangle$$

 $\lim_{n \to \infty} x_{n} = x \Leftrightarrow \lim_{n \to \infty} d_{i}(x_{n}, x_{i}, x) = 0$
 $\Leftrightarrow \forall \varepsilon = 0 \exists N \in \mathbb{N} : d_{i}(x_{N}, x) < \varepsilon \forall n \ge \mathbb{N}$

Set
$$x \in \mathbb{N}_{0}$$
, so existint eine eindeusige Darstellung $X = \sum_{R=0}^{\infty} Q_{R} g^{R} \mod \mathbb{N} \in \mathbb{N}_{0}$,
 $Q_{0}, ..., Q_{N} \in \{0, ..., p-1\}, Q_{N} \neq 0.$ (,, Ziffeindurstellung zur Bissis gr").
Definiere $\pi_{n} : \mathbb{N}_{0} \longrightarrow \{0, ..., p-1\}$
 $X \longrightarrow Q_{n}$ ($n \in \mathbb{N}$, $Q_{R} = 0 \quad \forall R > \mathbb{N}$).

Es geningt, die Stedigkeit Øbe ouf Bissen des Umgebungsfilters von
$$a \in \mathbb{N}_{0}$$

Brns. $\pi_{n}(a)$ zu Zeigen, also ouf der offenen Kugeln, d. A. Va $\in \mathbb{N}_{0}$ gilt:
 $V \in V \supset \exists \delta > 0 : \pi_{n}(V_{\overline{0}}(a)) \in U_{\overline{0}}(\pi_{n}(a))$

Set in der Eolge
$$\mathcal{E} < 1$$
. $\Rightarrow U_{\mathcal{E}}(\pi_n(\mathfrak{O})) = \{\pi_n(\mathfrak{O})\}$

Für pressendes & muss relso gelden:

$$\mathcal{B} \in \mathcal{O}_{\mathcal{O}}(a) \Rightarrow \pi_n(\mathcal{B}) = \pi_n(a) \iff \mathcal{O}_n - \mathcal{O}_n = \mathcal{O}$$

We here
$$\overline{\delta} = p^{-n}$$
, $\overline{\mathcal{A}}, \overline{\mathcal{A}}, \overline{\mathcal{A}}$: $U_{\overline{\delta}}(\alpha) = \{\mathcal{B} \in \mathbb{N}_{\delta} \mid |\alpha - \mathcal{B}|_{T} < p^{-n}\}$
= $\{\mathcal{B} \in \mathbb{N}_{\delta} \mid |\alpha - \mathcal{B}|_{T} \leq p^{-(n+1)}\}$

ם

6.
$$(a_{n})_{n=n}^{\infty}$$
 and $a_{n} \in \mathbb{Z}$ yie
 $S_{n} = \sum_{k=0}^{n} a_{k} g^{n}$, $n \in \mathbb{N}_{0}$
 $0, \mathbb{Z}_{2}^{\infty}$ S_n into Cauchyfelege in $\langle \mathbb{N}_{0}, d_{1}g_{0} \rangle$, $d.h.$
 $\forall C \geq 0 \exists \mathbb{N} \in \mathbb{N} \setminus d_{1}g_{0}(S_{c}, S_{j}) \leq C \quad \forall i, j \geq \mathbb{N}$
See o. 8. d.h. $i \geq g_{j} \Rightarrow S_{C} - S_{j} = \sum_{k=1}^{i} a_{k} g^{k}$
Wegen $i, g \geq \mathbb{N} \quad \text{into } S_{c} = S_{j} = g^{-n}$
 $\forall d_{1}g_{0}(S_{c}, S_{j}) = [S_{c} - S_{j}]_{0} \leq g^{-n}$
 $\Rightarrow d_{2}g_{0}(S_{c}, S_{j}) \leq C \quad \text{for } E \geq g^{-n}$
 $\beta = \mathbb{Z}_{c}^{\infty} \langle \mathbb{N}_{c}, d_{1}g_{1} \rangle$ and nicht valishindigs.
Walke $a_{0} \approx g^{-n} \quad \forall R \in \mathbb{N}_{c}$.
 $\Rightarrow S_{n} = \sum_{k=0}^{n} (g^{-n}) g^{k} = (g^{-n}) \sum_{k=0}^{n} g^{k} = (g^{-n}) \xrightarrow{g^{-n}} = g^{n-n} - 1$
Alex $d_{1}g_{0}(g_{1}^{-n} - 1, -1) = [g^{-n}]_{p} = g^{-(n-1)} \rightarrow 0$,
 $alos \quad S_{n} \rightarrow -1 \neq \mathbb{N}_{c}$.
7. $\langle X, \mathcal{X} \rangle$ dogs: Ream, Scanderff ; $X \notin X$.
G; \mathbb{Z}_{c}^{∞} indextete Binnes: Searn $x, y \in O_{c} \cup j, \quad X \neq y$.
 $a \in \mathbb{N}$: indextete Binnes: Searn $x, y \in O_{c} \cup j, \quad X \neq y$.
 $a \in \mathbb{N}$ indextete Binnes: Searn $x, y \in O_{c} \cup j, \quad X \neq y$.
 $ad \cup N \vee = \mathcal{I}$.
Somed and $y \notin U$ and $y \notin O_{c} \cup j, \quad y \neq U(g)$.
 $mid \quad U \cap V \neq \mathcal{I}$.
Somed and $y \notin U$ and $y \notin O_{c} \cup j, \quad y \neq U(g)$.
 $f_{1} \in \mathbb{N}$ is a degescilerare.
 $Winsen: \{x\} a \otimes g, \quad \oplus \{x\}^{n} \in \mathbb{N}$.
 $g^{n} \in \mathbb{N}$ $(x_{1})^{n} \in \mathbb{U} \cup O_{g} \in \{x\}^{c} \Rightarrow \forall x \in O_{g}$.
 $(x_{1})^{c} \in \bigcup [y] \in U \cup O_{g} \in \{x]^{c} \Rightarrow \forall x \in O_{g}$.

$$\begin{array}{l} \mbox{Monge } \mathbb{R}_{\omega} := \mathbb{R}_{v} \cup \mathbb{R}_{2} = \{(\omega, 0) \mid \omega, 0 \in \mathbb{R}, \ \omega \in 0\} \cup \{\mathbb{R}_{\omega} \setminus [\alpha, 0] \mid \alpha, 0 \in \mathbb{R}, \ \omega \in 0\} \\ \mbox{$\mathbb{R}_{v} = \mathbb{R}_{\omega} \cup \mathbb{R}_{2} = \{(\omega, 0) \mid \alpha, 0 \in \mathbb{R}, \ \omega \in 0\} \cup \mathbb{R}_{\omega} \in \mathbb{R}_{\omega} \cup \mathbb$$

6)
$$\overline{22}$$
: γ int Raunderff.
1. Fall: Seien $x, y \in \mathbb{R}, x + y$.
Dann existieun Indenvalle $U_{\varepsilon} := (x - \varepsilon, x + \varepsilon) \in T$, $V_{g^{-1}}(y - \delta, y + \delta) \in T$
 $(\varepsilon + 0, \delta > 0)$ mid $U_{\varepsilon} \cap V_{\delta} = \emptyset$.
z. B. für $\varepsilon, \delta \leq \frac{1}{2} |x - y|$
2. Eall: Sei $o. B. d. A = KR, y = \{\infty\}$.
Wähle $U_{\varepsilon} = 0.0.1, V_{\delta} := \mathbb{R}_{00} \setminus [-\delta, \delta] = T$
 $\Rightarrow U_{\varepsilon} \cap V_{\delta} = \emptyset$ für $(x - \varepsilon_{1} + \varepsilon) \in [-\delta, \delta] < \delta > \max\{1x - \varepsilon_{1}, 1x + \varepsilon\}$.
C) Son: Folge $(x_{n})_{n \in W}$ med firm $x_{n} = \infty$ in $\langle \mathbb{R}_{0}, T \rangle$
 $X_{n} \in \mathbb{R}$
 $(\varepsilon > genügl, die Konneugens auf einen Fillerborn $2u$ Zeigen; B_{ε} id FB ω . $U(\infty)$.)
Wähle $x_{n} = n$. Wegen $B = \mathbb{R}_{0} \setminus [\alpha, \varepsilon]$ gield des Konneugenshicknimm
für $N > 6$.
Ammerbung: Guessnied eindundig, de T_{2} -Raum.$

Ð

0

U

9.
$$\langle X, T \rangle, \langle Y, O \rangle$$
 dogn. Räume; Y Subboars won O ; $f: X \rightarrow Y$
ZZ: f shedig $\Rightarrow f^{-1}(V) \in T$ $\forall V \in Y$.
 $I \Rightarrow I$ f shedig, d.h. $\forall O \in O$, $\#III : f^{-1}(O) \in T$, when speciall $\forall V \in Y = O$.
 $I \Rightarrow V \cap O \in O$ gill:
 $O = \bigcup_{i \in I} \bigvee_{j \in I_{i}} V_{ij}$ mid $|I_{i}| < \infty$, $V_{ij} \in Y$.
Also gill sufgund der Openstionstreue des Urbildes:
 $f^{-1}(O) = \bigcup_{i \in I} \int_{i \in I_{i}} (V_{ij}) \Rightarrow f^{-1}(O) \in T$, when f stedig.